Paired Guide Design and Construction for Cas-CLOVER

Corey Brizzee, PhD

Senior Scientist

Two Main Options for Designing Guide-RNA Pairs for Cas-CLOVER

Option #1: Designing guide-RNA pairs for Cas-CLOVER

A variety of open-source gRNA design tools are available online for you: platforms that accommodate gRNA designs for paired Cas9 Nickase or single Cas9, such as <u>CRISPOR</u> and <u>CHOPCHOP</u> work well for CasCLOVER designs.

Option #2: Designing guide-RNA pairs for Cas-CLOVER manually

Using a variety of molecular biology software's to visualize and annotate sequences, a user can easily identify paired guides with a set of parameters.

mCherry

CRISPOR: Designing Guide-RNA Pairs for Cas-CLOVER

Pros:

- Allows for no genome to be selected
- Provides efficiency scoring based on two different promoters
- Displays inefficiency and high GC warnings

No need for selecting a genome unless listed

Cas9 single guides ONLY

Name Project

Copy and CRISPOR (citation) is a program that helps design, evaluate and clone guide sequences for the CRISPR/Cas9 system. CRISPOR Manual Sep 2022: RIP Jean-Stéphane Joly 1967-2022 Full list of changes Paste Target Step 1 Step 2 Sequence Planning a lentiviral gene knochout screen? Use CRISPOR Batch Select a genome Sequence name (optional): -- No Genome: no specificity, only cleavage efficiency scores (max. len 25kbp) Enter a single genomic sequence, < 2300 bp, typically an exon 🤒 We have 917 genomes, but not yours? Search NCBI assembly and send a GCF_/GCA_ ID to CRISPOR support. lear Box - Reset to default Paste here the genomic - not a cDNA - sequence of the exon you want to target. The sequence has to include the PAM site for your enzyme of interest, e.g. NGG. Maximum size 2300 bp. If you only have a cDNA, please BLAST or BLAT the cDNA Step 3 🧕 first to find the right exon sequence for CRISPOR. Select a Protospacer Adjacent Motif (PAM) 20bp-NGG - Sp Cas9, SpCas9-HF1, eSpCas9 1.1 ~ See notes on enzymes in the manual. Text case is preserved, e.g. you can mark ATGs with lowercase. Instead of a sequence, you can paste a chromosome range, e.g. chr1:11,130,540-11,130,751 CasCLOVER uses Version 5.01 - Documentation - Contact us - Downloads/local installation - Citation - License deactivated SpCas9

CRISPOR Results: Viewing and Downloading Guide-RNAs for Cas-CLOVER

CRISPOR Results: Viewing Potential Excel and SnapGene gRNAs

Excel Table Download of Target

4	Α		с	D
1	# Name	Perfect Day		
2	# Sequenc	ATGGTGAGCAAGGGCGAGGAG	GATAACATGGCCAT	
3	# Genome	noGenome		
4	# PAM	NGG		
5	# Position	2		
6	# Version	CRISPOR 5 01 2023-02-21T17:43:	11CFT	
7	# Results	http://crispor.org/crispor.pv?batch	ld=8iX8Ck4Zh1S3rrNi	i5une
8		nitp://onoportorgronoport.py.buton		i cuito
9	#auideld	targetSeg	Doench '16-Score	Moreno-Mateos-Score
10	29forw	CAAGGGCGAGGAGGATAACATGG	NotEnoughFlankSeg	NotEnoughFlankSeg
11	32rev	GCGCATGAACTCCTTGATGATGG	NotEnoughFlankSeg	NotEnoughFlankSeg
12	41forw	GGATAACATGGCCATCATCAAGG	NotEnoughFlankSeg	NotEnoughFlankSeg
13	59forw	CAAGGAGTTCATGCGCTTCAAGG	50	50
14	68forw	CATGCGCTTCAAGGTGCACATGG	53	37
15	71forw	GCGCTTCAAGGTGCACATGGAGG	63	61
16	72forw	CGCTTCAAGGTGCACATGGAGGG	51	41
17	77rev	CTCGAACTCGTGGCCGTTCACGG	46	56
18	84forw	CACATGGAGGGCTCCGTGAACGG	56	64
19	87rev	CGCCCTCGATCTCGAACTCGTGG	58	30
20	104forw	CGGCCACGAGTTCGAGATCGAGG	60	63
21	105forw	GGCCACGAGTTCGAGATCGAGGG	69	34
22	110forw	CGAGTTCGAGATCGAGGGCGAGG	53	61
23	111forw	GAGTTCGAGATCGAGGGCGAGGG	65	59
24	116forw	CGACATCGACCCCACCCCACC	43	57
25	117 forw	GAGATCGAGGGCGAGGGCGAGGG	54	66
26	120rev	TCTGGGTGCCCTCGTAGGGGCGG	55	67
27	123rev	CGGTCTGGGTGCCCTCGTAGGGG	59	72
28	124rev	GCGGTCTGGGTGCCCTCGTAGGG	40	79
29	125rev	GGCGGTCTGGGTGCCCTCGTAGG	41	80
30	131 forw	GGGCGAGGGCCGCCCCTACGAGG	52	75
31	132forw	GGCGAGGGCCGCCCCTACGAGGG	56	71
32	137rev	CACCTTCAGCTTGGCGGTCTGGG	32	71
33	138rev	TCACCTTCAGCTTGGCGGTCTGG	31	33
34	143rev	CTTGGTCACCTTCAGCTTGGCGG	53	56
35	146rev	ACCCTTGGTCACCTTCAGCTTGG	46	29
36	155forw	CACCCAGACCGCCAAGCTGAAGG	55	40
37	161rev	GAAGGGCAGGGGGCCACCCTTGG	40	70
38	164 for w	CGCCAAGCTGAAGGTGACCAAGG	61	45
39	165forw	GCCAAGCTGAAGGTGACCAAGGG	65	67
40	168forw	AAGCTGAAGGTGACCAAGGGTGG	59	69
41	171rev	TGTCCCAGGCGAAGGGCAGGGGG	53	49
42	172rev	ATGTCCCAGGCGAAGGGCAGGGG	41	63
43	173rev	GATGTCCCAGGCGAAGGGCAGGG	51	56
44	174rev	GGATGTCCCAGGCGAAGGGCAGG	39	44
45	178rev	GACAGGATGTCCCAGGCGAAGGG	56	72
46	179rev	GGACAGGATGTCCCAGGCGAAGG	49	43
47	185rev	CTGAGGGGACAGGATGTCCCAGG	56	67
48	187 forw	GTGGCCCCCTGCCCTTCGCCTGG	28	29
49	188forw	TEECCCCCTECCCTTCECCTEEE	43	56

SnapGene Download of Target

Regions to avoid selecting gRNAs

- 100bp region on the 5' and 3' of the target
- This will make analysis much easier if you are looking at the specific target edits
- This note can be discarded if only observing phenotype

CRISPOR Results: Filtering Potential Cas-CLOVER gRNAs

CRISPOR Results: Manually Finding gRNAs within Cas-CLOVER Parameters

Filtered Excel Table Download of Target

	A	В	С	D
1	# Name	Perfect Day		
2	# Sequenc	ATGGTGAGCAAGGGCGAGGAG	GATAACATGGCCAT	CATCAAGGAGTTCATGC
3	# Genome	noGenome		
4	# PAM	NGG		
5	# Position	?		
6	# Version	CRISPOR 5.01, 2023-02-21T17:43:	11CET	
7	# Results	http://crispor.org/crispor.py?batch	ld=8jX8Ck4Zh1S3rrNi	J5une
8				
9	#guideld	targetSeq	Doench '16-Score	Moreno-Mateos-Score
10	29forw	CAAGGGCGAGGAGGATAACATGG	NotEnoughFlankSeq	NotEnoughFlankSeq
11	32rev	GCGCATGAACTCCTTGATGATGG	NotEnoughFlankSeq	NotEnoughFlankSeq
12	41 forw	GGATAACATGGCCATCATCAAGG	NotEnoughFlankSeq	NotEnoughFlankSeq
13	59forw	CAAGGAGTTCATGCGCTTCAAGG	50	50
14	68forw	CATGCGCTTCAAGGTGCACATGG	53	37
15	71forw	GCGCTTCAAGGTGCACATGGAGG	63	61
16	72forw	CGCTTCAAGGTGCACATGGAGGG	51	41
17	77rev	CTCGAACTCGTGGCCGTTCACGG	46	56
18	84forw	CACATGGAGGGCTCCGTGAACGG	56	64
19	87rev	CGCCCTCGATCTCGAACTCGTGG	58	30
20	104forw	CGGCCACGAGTTCGAGATCGAGG	60	63
21	105forw	GGCCACGAGTTCGAGATCGAGGG	69	34
22	110forw	CGAGTTCGAGATCGAGGGCGAGG	53	61
23	111forw	GAGTTCGAGATCGAGGGCGAGGG	65	59
24	116forw	CGAGATCGAGGGGGAGGGGGGGG	43	57
25	117forw	GAGATCGAGGGCGAGGGCGAGGG	54	66
26	120rev	TCTGGGTGCCCTCGTAGGGGCGG	55	67
27	123rev	CGGTCTGGGTGCCCTCGTAGGGG	59	72
28	124rev	GCGGTCTGGGTGCCCTCGTAGGG	40	79
29	125rev	GGCGGTCTGGGTGCCCTCGTAGG	41	80
30	131 forw	GGGCGAGGGCCGCCCCTACGAGG	52	75
31	132forw	GGCGAGGGCCGCCCCTACGAGGG	56	71
32	137rev	CACCTTCAGCTTGGCGGTCTGGG	32	71
33	138rev	TCACCTTCAGCTTGGCGGTCTGG	31	33
34	143rev	CTTGGTCACCTTCAGCTTGGCGG	53	56
35	146rev	ACCCTTGGTCACCTTCAGCTTGG	46	29
36	155forw	CACCCAGACCGCCAAGCTGAAGG	55	40
37	161rev	GAAGGGCAGGGGGGCCACCCTTGG	40	/0
38	164forW	CGCCAAGCTGAAGGTGACCAAGG	61	45
39	16510FW	GUCAAGUIGAAGGIGACCAAGGG	65	67
40	10010FW	AAGCTGAAGGTGACCAAGGGTGG	59	69
41	171rev	TGTCCCAGGCGAAGGGCAGGGGG	53	49
42	172rev	ATGICCCAGGCGAAGGGCAGGGG	41	63
40	174rov	GATGICUCAGGUGAAGGGUAGGG	51	56
44	174rev	GGAI GTUUUAGGUGAAGGGUAGG	39	44
40	170rev	GALAGGATGTCCCAGGCGAAGGG	56	12
40	19Frey	GGACAGGAIGICUCAGGCGAAGG	49	43
47	103fev	CIGAGGGGACAGGAIGICCCAGG	50	0/
40	10/10/W	TACCOLOCIGOUCTICGUUTGG	28	29
49	10010FW	IGGUUUUIGUUUIIUGUUIGGG	43	50

The space between the left (yellow) and right (blue) guides must be within the 11-36bp range. Try to stay within 15-28 for highest success

Spacer region = 24bp

CRISPOR Results: Manually Finding gRNAs within Cas-CLOVER Parameters

At Demeetra, we try to identify guide pairs from the 5' end to the 3' end. We will pick three guide pairs that target regions spaced apart from each other. Therefore, after the user has found their first guide pairs, start moving your way down the target sequence The final guide pair selection should look like this where the target sites are throughout the target sequence and all spacer lengths are within optimal range.

Left guide sequence (bottom strand read right to left) Site 1: GGCGGTCTGGGTGCCCTCGT Site 2: AGGACAGCTTCAAGTAGTCG Site 3: GGGGCCGTCGGAGGGGAAGT Right guide sequence (top strand read left to right) Site 1: TGGCCCCTGCCCTTCGCCT Site 2: CGCGTGATGAACTTCGAGGA Site 3: GCTGGGAGGCCTCCTCCGAG

CHOPCHOP: Designing Guide-RNA Pairs for Cas-CLOVER

Pros:

- CRISPR/Cas9 Nickase option
- Self-complementarity scores
- Can set many different parameters

<u>Cons:</u>

- Have to select a genome
- Does not display any inefficiencies
- Cas9 Nickase guide pair results are not always consistent
- Few Cas Enzymes

CHOPCHOP: Setting Parameters for Guide-RNA Pairs for Cas-CLOVER

CHOPCHOP: Viewing and Downloading Guide-RNA Pairs for Cas-CLOVER

Download results: Please select one

Rank	Target sequence	Genomic location	Cluster	Off-target pairs	Off-targets MM0	Off-targets MM1	Off-targets MM2	Off-targets MM3	Restriction sites	Best ID	Í
1	CCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:403	75	0	0/0	0/0	0/0	0/0	BtgI:10 MboII:14,17 BbsI:12 BsaJI:10 StuI:24 PflMI:16 NcoI:10 BseYI:16 BslI:16 StyI:10	1	
2	CCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:404	76	0	0/0	0/0	0/0	1/0	BtgI:9 MboII:16 BbsI:11 BsaJI:9 StuI:23 PflMI:15 NcoI:9 BseYI:15 BslI:15 StyI:9	2	
з	GCATTACGGGGCCGTCGGAGGGGAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:402	73	0	0/0	0/0	0/0	1/0	BtgI:11 MboII:15,18 BbsI:13 BsaJI:11 StuI:25 PflMI:17 NcoI:11 BseYI:17 BslI:17 StyI:11	3	
4	CCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:407	77	0	0/0	0/0	0/0	2/0	<pre>BtgI:6 StuI:20 PflMI:12 BsaJI:6 NcoI:6 BseYI:12 BslI:12 StyI:6</pre>	5	
5	GCATTACGGGGCCGTCGGAGGGGGAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGG	seq:402	74	0	0/0	0/0	0/0	1/1	BtgI:11 MboII:15,18 BbsI:13 BsaJI:11 StuI:25 PflMI:17 NcoI:11 BseYI:17 BslI:17 BseRI:18 StyI:11	7	
6	CCAACTTGATGTTGACGTTGTAGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGC	seq:591	120	e	0/0	0/0	0/0	0/0	BSII:18 BSaXI:22	8	
7	CCGACGGCCCCGTAATGCAGAAGAAGAACATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGG	seq:407	78	0	0/0	0/0	0/0	2/1	<pre>BtgI:6 BseYI:12 PflMI:12 BsaJI:6 StuI:20 NcoI:6 BseRI:13 BslI:12 StyI:6</pre>	9	
8	CCACGCCGCCGTCCTCGAAGTTCTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCT	seq:306	57	0	0/0	0/0	0/0	0/1	HpyCH4III:6 PleI:10 MlyI:10 BstNI:13 BsaJI:11 Tsp45I:6 BseRI:9 StyD4I:11 ScrFI:13 PspGI:11 HinfI:16	10	
9	CCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCCGTCCTCGAAGTTCATCACGCG	seq:240	36	0	0/0	0/0	0/0	3/1	BSoBI:16 AvaI:16 HpyAV:21 BsaJI:17	11	
10	CCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCCGTCCTCGAAGTTCATCACGCG	seq:245	39	0	0/0	0/0	0/0	3/1	BSOBI:11 AVaI:11 HpyAV:16 BSaJI:12	13	
11	CCGTCCTCGAAGTTCATCACGCGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCT	seq:298	53	0	0/0	0/0	0/0	1/1	HpyCH4III:14 PleI:18 MlyI:18 BstNI:21 BsaJI:19 Tsp45I:8,14 HphI:20 BstEII:8 BseRI:17 StyD4I:19 ScrFI:21 PspGI:19 HinfI:24	14	
12	CCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCCAACTTGATGTTGACGTTGTAG	seq:554	113	0	0/0	0/0	1/0	3/0	ApeKI:4 TseI:4 MspA1I:4 NcII:9 PvuII:4 StyD4I:7 Fnu4HI:5 ScrFI:9	15	
13	GGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCA	seq:357	64	0	0/0	0/0	0/0	2/0	ApeKI:6 TseI:6 BanI:13 Fnu4HI:7,12 NlaIV:15	16	
14	CCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGCCTCGAAGTTCATCACGCGCTCC	seq:240	35	0	0/0	0/0	0/0	3/2	BSoBI:16 AvaI:16 HpyAV:21 BsaJI:17	17	
15	CCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGG	seq:414	79	0	0/0	0/0	0/0	4/1	BseRI:6 StuI:13 BseYI:5	19	
16	CCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACCACGATGGTGTAGTCCTCGTTG	seq:583	118	0	0/0	0/0	0/0	5/0	HohI:5	20	Ξ.

This is an interactive results page with many viewing and downloading options

CHOPCHOP: Viewing and Downloading Guide-RNA Pairs for Cas-CLOVER

fastaInput.fa

Download results: Please select one

Rank	Target sequence	Genomic location	Cluster	Off-target pairs	Off-targets MM0	Off-targets MM1	Off-targets MM2	Off-targets MM3	Restriction sites	Best ID	Ê
1	CCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:403	75	0	0/0	0/0	0/0	0/0	BtgI:10 MboII:14,17 BbsI:12 BsaJI:10 StuI:24 PflMI:16 NcoI:10 BseYI:16 BsII:16 StyI:10	1	
2	CCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:404	76	0	0/0	0/0	0/0	1/0	BtgI:9 MboII:16 BbsI:11 BsaJI:9 StuI:23 PflMI:15 NcoI:9 BseYI:15 BslI:15 StyI:9	2	
з	GCATTACGGGGCCGTCGGAGGGGAGAAGAAGAACATGGGCTGGGAGGCCTCCCTC	seq:402	73	0	0/0	0/0	0/0	1/0	BtgI:11 MboII:15,18 BbsI:13 BsaJI:11 StuI:25 PflMI:17 NcoI:11 BseYI:17 BslI:17 StyI:11	з	
4	CCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCCTC	seq:407	77	0	0/0	0/0	0/0	2/0	BtgI:6 StuI:20 PflMI:12 BsaJI:6 NcoI:6 BseYI:12 BslI:12 StyI:6	5	
5	GCATTACGGGGCCGTCGGAGGGGAGAAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCCGAGGACGG	seq:402	74	0	0/0	0/0	0/0	1/1	BtgI:11 MboII:15,18 BbsI:13 BsaJI:11 StuI:25 PflMI:17 NcoI:11 BseYI:17 BsII:17 BseRI:18 StyI:11	7	
6	CCAACTTGATGTTGACGTTGTAGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAACGC	seq:591	120	0	0/0	0/0	0/0	0/0	BslI:18 BsaXI:22	8	
7	CCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGG	seq:407	78	0	0/0	0/0	0/0	2/1	BtgI:6 BseYI:12 PflMI:12 BsaJI:6 StuI:20 NcoI:6 BseRI:13 BslI:12 StyI:6	9	
8	CCACGCCGCCGTCCTCGAAGTTCTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCT	seq:306	57	0	0/0	0/0	0/0	0/1	HpyCH4III:6 PleI:10 MlyI:10 BstNI:13 BsaJI:11 Tsp45I:6 BseRI:9 StyD4I:11 ScrFI:13 PspGI:11 HinfI:16	10	
9	CCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCCGTCCTCGAAGTTCATCACGCG	seq:240	36	0	0/0	0/0	0/0	3/1	BSoBI:16 AvaI:16 HpyAV:21 BsaJI:17	11	
10	CCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCCGTCCTCGAAGTTCATCACGCG	seq:245	39	0	0/0	0/0	0/0	3/1	BSoBI:11 AvaI:11 HpyAV:16 BsaJI:12	13	
11	CCGTCCTCGAAGTTCATCACGCGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATCT	seq:298	53	0	0/0	0/0	0/0	1/1	HpyCH4III:14 PleI:18 MlyI:18 BstNI:21 BsaJI:19 Tsp45I:8,14 HphI:20 BstEII:8 BseRI:17 StyD4I:19 ScrFI:21 PspGI:19 HinfI:24	14	
12	CCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCCAACTTGATGTTGACGTTGTAG	seq:554	113	0	0/0	0/0	1/0	3/0	ApeKI:4 TseI:4 MspA1I:4 NciI:9 PvuII:4 StyD4I:7 Fnu4HI:5 ScrFI:9	15	
13	GGACGGCGAGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCA	seq:357	64	0	0/0	0/0	0/0	2/0	ApeKI:6 TseI:6 BanI:13 Fnu4HI:7,12 NlaIV:15	16	
14	CCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGCCTCGAAGTTCATCACGCGCTCC	seq:240	35	0	0/0	0/0	0/0	3/2	BSoBI:16 AvaI:16 HpyAV:21 BsaJI:17	17	
15	CCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTCCGAGCGGATGTACCCCGAGGACGG	seq:414	79	0	0/0	0/0	0/0	4/1	BseRI:6 StuI:13 BseYI:5	19	
16	CCCGGCGCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACCACGATGGTGTAGTCCTCGTTG	seq:583	118	0	0/0	0/0	0/0	5/0	HphI:5	20	

This is an interactive results page with many viewing and downloading options

Target Sequence includes left and right guides (blue and red, respectively) with the spacer region in between

CHOPCHOP: Downloading and Filtering Guide-RNA **Pairs for Cas-CLOVER**

Remember Region

to avoid

IMPORTANT - CHOPCHOP results include ***Sequences are 5' to 3' and INCLUDE the PAM the PAM sequence! Rank Left Guide Spacer Region **Right Guide** Genomic location 69 CCTTGATGATGGCCATGTTATCC AGTTCATGCGCTTCAAGGTGCACATGGAGGGCT CCGTGAACGGCCACGAGTTCGAG 21 52 CCATCATCAAGGAGTTCATGCGC TTCAAGGTGCACATGGAGGGCTCCGTGAA CCTCGATCTCGAACTCGTGGCCG 32 53 CCATCATCAAGGAGTTCATGCGC TTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCA CCTCGCCCTCGATCTCGAACTCG 32 34 CCTTGAAGCGCATGAACTCCTTG TGCACATGGAGGGCTCCGTGAACGG CCACGAGTTCGAGATCGAGGGCG 39 41 CCATGTGCACCTTGAAGCGCATG AGGGCTCCGTGAACGG CCACGAGTTCGAGATCGAGGGCG 48 51 47 GCGCTTCAAGGTGCACATGGAGG GCTCCGTGAACGG CCACGAGTTCGAGATCGAGGGCG Since Sequences are 5' to 3' you will notice 42 CCCTCCATGTGCACCTTGAAGCG CTCCGTGAACGG CCACGAGTTCGAGATCGAGGGCG 52 112 112 CCCTCGTAGGGGGGGGCCCTCGCC CACCCAGACCGCCAAGCTGAAGGTGACCAAGGGTGG CCCCCTGCCCTTCGCCTGGGACA that the left guide will begin with 'CCN' ----102 CCGCCCCTACGAGGGCACCCAGA CCGCCAAGCTGAAGGTGACCAAGGG CCCAGGCGAAGGGCAGGGGGCCA 120 86 CCCCTACGAGGGCACCCAGACCG CCAAGCTGAAGGTGACCAAGGG CCCAGGCGAAGGGCAGGGGGCCA 123 87 CCCTACGAGGGCACCCAGACCGC CAAGCTGAAGGTGACCAAGGG CCCAGGCGAAGGGCAGGGGGCCA 124 103 CCTACGAGGGGCACCCAGACCGCC AAGCTGAAGGTGACCAAGGG 125 CCCTTCGCCTGGGACATCCTGTC 105 CCTTCAGCTTGGCGGTCTGGGTG **TGACCAAGGGTGGCCCCCTG** 135 TGACCAAGGGTGGC CCCCTGCCCTTCGCCTGGGACAT 135 110 CCTTCAGCTTGGCGGTCTGGGTG 113 CCTTCAGCTTGGCGGTCTGGGTG TGACCAAGGGTGGCC CCCTGCCCTTCGCCTGGGACATC 135 137 82 CACCTTCAGCTTGGCGGTCTGGG ACCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATC CCGTACATGAACTGAGGGGGACAG 75 TCACCTTCAGCTTGGCGGTCTGG 138 CCAAGGGTGGCCCCCTGCCCTTCGCCTGGGACATC CCGTACATGAACTGAGGGGGACAG not 'NGG' or 'CCN' 80 CCTTGGTCACCTTCAGCTTGGCG GTGGCCCCCTGCCCTTCGCCTGGGACATCCTGTC CCCTCAGTTCATGTACGGCTCCA 144 83 CCTTGGTCACCTTCAGCTTGGCG GIGGCCCCCTGCCCTTCGCCIGGGACATCCTGT CCCCTCAGTTCATGTACGGCTCC 144 107 CCTTGGTCACCTTCAGCTTGGCG GTGGCCCCCTGC CCTTCGCCTGGGACATCCTGTCC 144 We can now map these on SnapGene! 84 CCCTTGGTCACCTTCAGCTTGGC 145 TGGCCCCCTGCCCTTCGCCTGGGACATCCTGTC CCCTCAGTTCATGTACGGCTCCA 145 90 CCCTTGGTCACCTTCAGCTTGGC CCTCAGTTCATGTACGGCTCCAA IGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCC 104 CCCTTGGTCACCTTCAGCTTGGC **IGGCCCCCTGCCCTTCGCCTGGGACAT** CCTGTCCCCTCAGTTCATGTACG 145 146 78 CCAAGCTGAAGGTGACCAAGGGT GGCCCCTGCCCTTCGCCTGGGACATCCTGTCCCC TCAGTTCATGTACGGCTCCAAGG 97 CCACCCTTGGTCACCTTCAGCTT CCCCTGCCCTTCGCCTGGGACATCCTGTC CCCTCAGTTCATGTACGGCTCCA 148 CCCCTGCCCTTCGCCTGGGGACATCCTGT 148 100 CCACCCTTGGTCACCTTCAGCTT CCCCTCAGTTCATGTACGGCTCC 120 CCAAGGGTGGCCCCCTGCCCTTC GCCTGGGACATCCTGTCCCC 161 TCAGTTCATGTACGGCTCCAAGG

Excel Table Download of Perfect Day Target

Although CHOPCHOP results in 128 potential sgRNA pairs, the user will have to manually filter results depending on parameters set \rightarrow 11 Final sgRNA pairs

CHOPCHOP: Viewing and Selecting Guide-RNA Pairs for Cas-CLOVER

Take the results from Excel and import them into SnapGene → After the importing you will have a refined version like below.

	104 CCCTTGGTCACCTTCAGCTTGGC	TGGCCCCCTGCCCTTCGCCTGGGACAT	CCTGTCCCCTCAGTTCATGTACG	145
PD site 1	78 CCAAGCTGAAGGTGACCAAGGGT	GGCCCCTGCCCTTCGCCTGGGACATCCTGTCCCC	TCAGTTCATGTACGGCTCCAAGG	146
	97 CCACCCTTGGTCACCTTCAGCTT	CCCCCTGCCCTTCGCCTGGGACATCCTGTC	CCCTCAGTTCATGTACGGCTCCA	148
	100 CCACCCTTGGTCACCTTCAGCTT	CCCCCTGCCCTTCGCCTGGGACATCCTGT	CCCCTCAGTTCATGTACGGCTCC	148
PD site 2	120 CCAAGGGTGGCCCCCTGCCCTTC	GCCTGGGACATCCTGTCCCC	TCAGTTCATGTACGGCTCCAAGG	161
	111 CCAGGCGAAGGGCAGGGGGGCCAC	GACATCCTGTCC	CCTCAGTTCATGTACGGCTCCAA	167
	92 CCCAGGCGAAGGGCAGGGGGCCA	ACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGG	CCTACGTGAAGCACCCCGCCGAC	168

CHOPCHOP: Designing Guide-RNAs for Cas-CLOVER

CHOPCHOP can be used just like CRISPOR to identify single guide RNAs for use with Cas-CLOVER

CHOPCHOP: Viewing and Downloading Guide-RNAs for Cas-CLOVER

CHOPCHOP can be used just like CRISPOR to identify single guide RNAs for use with Cas-CLOVER

Download results: Please select one

fastalnput.fa

View in UCSC genome browser

Rank	Target sequence	Genomic location	Strand	GC content (%)	Self-complementarity	ммø	MM1	MM2	ММЗ	Efficiency
1	CAACGAGGACTACACCATCGTGG	seq:627	+	55	0	0	0	0	0	73.83
2	CTACAACGTCAACATCAAGTTGG	seq:591	+	40	1	0	0	0	0	71.94
3	CTCCGAGCGGATGTACCCCGAGG	seq:453	+	70	0	0	0	0	0	67.34
4	GAACAGTACGAACGCGCCGAGGG	seq:649	+	60	0	0	0	0	0	67.16
5	GCGTTCGTACTGTTCCACGATGG	seq:641	-	55	1	0	0	0	0	67.53
6	CTCGGGGTACATCCGCTCGGAGG	seq:452	-	70	2	0	0	0	0	68.51
7	GTCGGCGGGGTGCTTCACGTAGG	seq:227	-	70	0	0	0	0	0	64.17
8	GAACTTCGAGGACGGCGGCGTGG	seq:306	+	70	0	0	0	0	0	63.33
9	GGAACAGTACGAACGCGCCGAGG	seq:648	+	65	0	0	0	0	0	61.93
10	CGCCCTCGATCTCGAACTCGTGG	seq:87	-	65	1	0	0	0	0	58.50
11	TGCATTACGGGGCCGTCGGAGGG	seq:403	-	65	1	0	0	0	0	49.57
12	CGGCGGCCACTACGACGCTGAGG	seq:522	+	75	Θ	0	0	0	1	66.36
13	ATCTACAAGGTGAAGCTGCGCGG	seq:370	+	50	0	0	0	0	1	66.22
14	CGCGTGATGAACTTCGAGGACGG	seq:298	+	55	0	0	0	0	1	64.73
15	GAGCGGATGTACCCCGAGGACGG	seq:457	+	65	1	0	0	0	1	63.34

CHOPCHOP: Downloading and Filtering Guide-RNAs for Cas-CLOVER

The user will manually filter out guide choices by set parameters

CHOPCHOP: Downloading and Filtering Guide-RNAs for Cas-CLOVER

lank	Target sequence	Genomic location	Strand	GC content (%)	Self-complementarity	Efficiency
92	CAAGGGCGAGGAGGATAACATGG	9	ŧ	55	φ .	46.7
72	GGATAACATGGCCATCATCAAGG	21	ŧ	45	Ð	60.62
73	GCGCATGAACTCCTTGATGATGG	32	-	50	Ð	57.08
50	CAAGGAGTTCATGCGCTTCAAGG	39	ŧ	50	Ð	50.38
54	CATGCGCTTCAAGGTGCACATGG	48	÷	55	Q.	52.7
58	GCGCTTCAAGGTGCACATGGAGG	51	÷	60	0	62.8
55	CGCTTCAAGGTGCACATGGAGGG	52	±	55	Ð	51.08
95	CACATGGAGGGCTCCGTGAACGG	64	ŧ	60	5	56.24
38	CTCGAACTCGTGGCCGTTCACGG	77	-	60	4	45.62
25	CGGCCACGAGTTCGAGATCGAGG	84	ŧ	65	4	60.07
40	GGCCACGAGTTCGAGATCGAGGG	85	±	60	4	69.4
10	CGCCCTCGATCTCGAACTCGTGG	87	-	65	4	58.5
31	CGAGTTCGAGATCGAGGGCGAGG	90	÷	65	4	52.59
62	GAGTTCGAGATCGAGGGCGAGGG	91	÷	60	4	64.75
124	CGAGATCGAGGGCGAGGGCGAGG	96	±	75	0	43.2
130	GAGATCGAGGGCGAGGGCGAGGG	97	±	70	0	53.89
100	01017001000001000001000	07		70	ŷ	52.00
63	TCTGGGTGCCCTCGTAGGGGCGG	120	-	70	2	54.73
16	CGGTCTGGGTGCCCTCGTAGGGG	123	-	70	1	58.51
20	GCGGTCTGGGTGCCCTCGTAGGG	124	-	70	1	39.58
67	GGCGGTCTGGGTGCCCTCGTAGG	125	-	75	0	41.22
101	CACCCAGACCGCCAAGCIGAAGG	135	+	65	0	54.81
86	CACCTTCAGCTTGGCGGTCTGGG	137	-	60	0	32.29
65	TCACCTTCAGCTTGGCGGTCTGG	138	-	60	0	30.65
113	CTTGGTCACCTTCAGCTTGGCGG	143	-	55	0	53.38
98	CGCCAAGCTGAAGGTGACCAAGG	144	+	60	0	60.96
100	GCCAAGCTGAAGGTGACCAAGGG	145	+	55	0	65
102	ACCCTTGGTCACCTTCAGCTTGG	146	-	55	0	45.57
106	AAGCTGAAGGTGACCAAGGGTGG	148	+	55	0	59.23
127	GAAGGGCAGGGGGCCACCCTTGG	161	-	75	1	40.15
107	TGGCCCCCTGCCCTTCGCCTGGG	168	+	75	0	42.63

Initial Parameters

- 1) GC Content <80%
- 2) Efficiency \rightarrow Highest possible (may not be applicable)
- 3) Location \rightarrow Avoid 5' and 3' 100bp regions for analysis
- 4) Self-Complementarity \rightarrow lowest possible

CHOPCHOP allows you to download results to a GenBank file which will allow you to import the guides into SnapGene...But beware CHOPCHOP includes the PAM sequence in their guides!

CHOPCHOP: Downloading and Filtering Guide-RNAs for Cas-CLOVER

Rank	Target sequence	Genomic location	Strand	GC content (%)	Self-complementarity	Efficiency
92	CAAGGGCGAGGAGGATAACATGG	Ð	ŧ	55	0	46.7
72	GGATAACATGGCCATCATCAAGG	21	ŧ	45	0	60.62
73	GCGCATGAACTCCTTGATGATGG	32	-	50	0	57.08
50	CAAGGAGTTCATGCGCTTCAAGG	39	ŧ	50	0	50.38
54	CATGCGCTTCAAGGTGCACATGG	48	÷	55	0	52.7
58	GCGCTTCAAGGTGCACATGGAGG	51	÷	60	0	62.8
55	CGCTTCAAGGTGCACATGGAGGG	52	÷	55	0	51.08
95	CACATGGAGGGCTCCGTGAACGG	64	ŧ	60	5	56.24
38	CTCGAACTCGTGGCCGTTCACGG	77	-	60	4	45.62
25	CGGCCACGAGTTCGAGATCGAGG	84	+	65	4	60.07
40	GGCCACGAGTTCGAGATCGAGGG	85	+	60	4	69.4
10	CGCCCTCGATCTCGAACTCGTGG	87	-	65	1	58.6
31	CGAGTTCGAGATCGAGGGCGAGG	90	÷	65	1	52.59
62	GAGTTCGAGATCGAGGGCGAGGG	91	÷	60	1	64.75
124	CGAGATCGAGGGCGAGGGCGAGG	96	ŧ	75	Q	43.2
130	GAGATCGAGGGCGAGGGCGAGGG	97	±	70	Ð	53.89
100	01017001000001000001000	07		70	0	53.00
63	TCTGGGTGCCCTCGTAGGGGCGG	120	-	70	2	54.73
16	CGGTCTGGGTGCCCTCGTAGGGG	123	-	70	1	58.51
20	GCGGTCTGGGTGCCCTCGTAGGG	124	-	70	1	39.58
67	GGCGGTCTGGGTGCCCTCGTAGG	125	-	75	0	41.22
101	CACCCAGACCGCCAAGCTGAAGG	135	+	65	U	54.81
86	CACCTTCAGCTTGGCGGTCTGGG	137	-	60	0	32.29
65	TCACCTTCAGCTTGGCGGTCTGG	138	-	60	0	30.65
113	CTTGGTCACCTTCAGCTTGGCGG	143	-	55	0	53.38
98	CGCCAAGCTGAAGGTGACCAAGG	144	+	60	0	60.96
100	GCCAAGCTGAAGGTGACCAAGGG	145	+	55	0	65
102	ACCCTTGGTCACCTTCAGCTTGG	146	-	55	0	45.57
106	AAGCTGAAGGTGACCAAGGGTGG	148	+	55	0	59.23
127	GAAGGGCAGGGGGCCACCCTTGG	161	-	75	1	40.15

Reminder: The space between the left (yellow) and right (blue) guides must be within the 11-36bp range. Try to stay within 15-28 for highest success

Begin with first potential left guide (reverse strand)The highlighted are the first top two left guides

CHOPCHOP Results: Manually Finding gRNAs within Cas-CLOVER Parameters

At Demeetra, we try to identify guide pairs from the 5' end to the 3' end. We will pick three guide pairs that target regions spaced apart from each other. Therefore, after the user has found their first guide pairs, start moving your way down the target sequence The final guide pair selection should look like this where the target sites are throughout the target sequence and all spacer lengths are within optimal range.

Site 3: CTCCGAGCGGATGTACCCCG

Site 3: CTTCTGCATTACGGGGCCGT

CRISPOR and CHOPCHOP Yield Similar Results for gRNAs within Cas-CLOVER Parameters

The two guide-RNAs should be designed in the PAMs-out orientation, separated by a spacer region of 15 – 28 nucleotides. You simply need to ensure that the gRNA pairs are in the PAMs-out orientation and the targeted sequences are separated by 15 – 28 nucleotides. The recruited Clo51 nuclease domains dimerize and this introduces a single double-stranded break in this spacer region between the two gRNA target sites.

Manually Designing sgRNA Pairs for Cas-CLOVER

- 1) In the users molecular cloning program of choice, import the target sequence as a DNA file.
- 2) Search for 'GG' in your target sequence \rightarrow there should be a plethora of hits

Manually Designing sgRNA Pairs for Cas-CLOVER

- 3) Avoid the 100bp 5' and 3' regions if sequencing analysis will be performed
- 4) Begin on the reverse strand to identify your first potential left guide (see green boxes)

5) From the PAM site, identify a 20bp guide sequence and annotate

A <mark>GGG</mark> CGA	<mark>ggg</mark> c(CGCC	сста	CGA <mark>G</mark>	G G C A	ACCCA	GA	CCGC	САА	GCTO	GAA	<mark>g g</mark> t g	ACC	AAG	<mark>G G</mark> T	<mark>g g</mark> c	ccc	CTG	ccc	ттс	GCC	T <mark>GG(</mark>	GAC	АТС	TGT	ccc	стса	GTTO	ATG	тас	<mark>g g </mark> c'	тсс	A A <mark>G</mark>	G C C	TAC	GTGA	AGC	ACC	CCGC	CGA	CATC	ccc
+++++++								++++	+++	++++	+++	++++	+ + + + + + + + + + + + + + + + + + +	+++	++++	+++		+++	$\rightarrow \rightarrow +$		+++	++++	+ + +		\mapsto	+ + + + + + + + + + + + + + + + + + +	\mapsto	\mapsto		+++		\mapsto	+++		++	\mapsto	\mapsto	+++	$\rightarrow \rightarrow \rightarrow$		\mapsto	\leftrightarrow
TCCCGCT	CC(<mark>G(</mark>	G <mark>C</mark> GG	<mark>gg</mark> at	GCTC	CCGI	r <mark>ggg</mark> t	СТ	<mark>g g c</mark> g	<mark>G</mark> T T	CGAC	стт	CCAC	t <mark>g g</mark>	ттс	CCA	C C <mark>G</mark>	GGG	<mark>G</mark> AC	GGG	AAG	C <mark>GG</mark>	ACC	CTG	T A <mark>G (</mark>	<mark>aca</mark>	GGG	AGT (CAAG	ТАС	ATG	CCG	A <mark>GG</mark>	TTC	C <mark>GG</mark>	ATG	CACT	TCG	T <mark>G G</mark>	<mark>GG</mark> C <mark>G</mark>	<mark>.</mark> Сто	GTA <mark>G</mark>	<mark>g g g</mark>
	40				45				50	0				55					60					65				70					75					80				85
EGE	G	R	P Y	E	G	т с	2	T A	K	< L	ĸ	V	Т	к	G	G	Ρ	L	Ρ	F	A	W	D	I	L	S	P Q	F	М	Y	G	S	к	Α	Y	V	К	н	P A	, D	I	Ρ
																			mC	herry	\rightarrow																					
				left a	uide 1	1																																				

Manually Designing sgRNA Pairs for Cas-CLOVER

6) Regions with a lot of PAM sites are good areas to focus on and then keep scanning downstream for the first potential right guide → The distance between the left guide boundary to the right guide PAM must be more than 30bps (20bp right guide sequence will leave a 10bp spacer length)

Spacer length between left guide 1 and right guide 1 is 25bps which is within the optimal range for Cas-CLOVER, however, there are multiple choices well within range for Cas-CLOVER

Production of sgRNA Pairs for Cas-CLOVER

Option #1: Synthetic guide synthesis

If the user will be using a non-plasmid based system (mRNA, protein, etc.) then ordering synthetic guides from providers such as Synthego which will convert the DNA target sequence to RNA and automatically add the SpCas9 scaffold (Bottom left picture)

Option #2: Plasmid-based sgRNA expression

Order oligos for both the left and right guide sequences and assemble via Golden Gate Assembly (Bottom right picture)

»SYNTHEGO

Golden Gate Assembly (GGA) Destination Plasmid \rightarrow pDMT4-282

Contains: GGA sites (Bsal and BsmBI) Dual guide cassette driven by SNR52 promoter E.Coli components (AmpR, ori)

At Demeetra, we start with the left guide cloning first.

Left guide sequence (bottom strand read right to left) Site 1: GGCGGTCTGGGTGCCCTCGT Site 2: AGGACAGCTTCAAGTAGTCG Site 3: GGGGCCGTCGGAGGGGAAGT

Note how BsaI will cleave, the overhangs will be used in the design of the oligos for building the guides. Let's start with **Site 1**. The user will order two oligos for each guide, anneal them, and assemble.

```
Oligo 1 (<u>bottom</u> strand 5' to 3')

CgcaGGCGGTCTGGGTGCCCTCGT

Oligo 2 (<u>top</u> strand 5' to 3')

aaacACGAGGGCACCCAGACCGCC

Annealed oligos

aaacACGAGGGCACCCAGACCGCC

TGCTCCCGTGGGTCTGGCGGacgC
```

Left guide sequence (bottom strand read right to left) **Site 1: GGCGGTCTGGGTGCCCTCGT** Site 2: AGGACAGCTTCAAGTAGTCG Site 3: GGGGCCGTCGGAGGGAAGT

Oligo	1: leftguide1 sense 5 ' cgcaGGCGGTCTGGGTGCCG	стобт				
Oligo	5' Phosphorylated	20000		SCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTA	ACGAGGGCACCCAGACCGCCT	gcg caagcccggaatcgaaccggggcccaacgat
Sall	5' Phosphorylated	20		CGTGGCTGAGCCACGGTGAAAAAGTTCAACTATTGCCTGATCGGAATAAAATTGAACGATAAAGATCGAGAT gRNA Scaffold	TGCTCCCGTGGGGTCTGGCGG PD LG Site 1	CGC GTTCGGGCCTTAGCTTGGCCCCCGGGTTGCTA SUF20 tRNA (Gly)
Asn Arg Ala	. 5' CGCAGGCGGTCT(GGTGCCCTCGT +++++++ CCACGGGAGCAcaaa	3′ 28 5′			

- After annealing the oligos together, Golden Gate Assembly is performed to insert a single guide into the base vector:
 - Cuts at the Bsa1 sites
 - Ligates in the guide fragment
 - Orientation dictated by the overhangs
- In current system, each oligo fragment is cloned into the base vector individually
- After GGA, reaction is transformed into E.coli
- Colonies are prepped and sequenced to verify guide sequence and correct orientation

Upon proper assembly, the Left guide for Site 1 will be correctly orientated and will have replaced the left guide site in the GGA destination plasmid. Now the user will move on to the Right guide for Site 1.

Golden Gate Assembly (GGA) Destination Plasmid \rightarrow pDMT4-282

Contains: GGA sites (Bsal and BsmBl) Dual guide cassette driven by SNR52 promoter E.Coli components (AmpR, ori)

Right guide sequence (top strand read left to right) Site 1: **TGGCCCCTGCCCTTCGCCT** Site 2: CGCGTGATGAACTTCGAGGA Site 3: GCTGGGAGGCCTCCTCCGAG

Note how BsmBI will cleave, the overhangs will be used in the design of the oligos for building the guides. **For Right Guide Site 1,** the assembly is more straight forward. The user will order two oligos for each guide, anneal them, and assemble.

```
Oligo 1 (<u>top</u> strand 5' to 3')

cgcaTGGCCCCTGCCCTTCGCCT

Oligo 2 (<u>bottom</u> strand 5' to 3')

aaacAGGCGAAGGGCAGGGGGCCA
```

Annealed Oligos

	Start (0) End (24)	
5′	cgcaTGGCCCCCTGCCCTTCGCCT	3'
3′	ACCGGGGGACGGGAAGCGGAcaaa	5′

Right guide sequence (top strand read left to right) Site 1: **TGGCCCCTGCCCTTCGCCT** Site 2: CGCGTGATGAACTTCGAGGA Site 3: GCTGGGAGGCCTCCTCCGAG

CACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTA	aaac	AGGCGAAGGGCAGGGGGCC	ATGCG	CAAGCCCGGAATCGAACCGGGG
	tttg	TCCGCTTCCCGTCCCCCGG	ACGC	
gRNA Scaffold	-	PD RG Site 1		SUF20 tRNA (Gly)

- After annealing the oligos together, Golden Gate Assembly is performed to insert a single guide into the base vector:
 - Cuts at the BsmB1 sites
 - Ligates in the guide fragment
 - Orientation dictated by the overhangs
- In current system, each oligo fragment is cloned into the base vector individually
- After GGA, reaction is transformed into E.coli
- Colonies are prepped and sequenced to verify guide sequence and correct orientation

Cloning the Guide Cassette for Cas-CLOVER

Upon proper assembly, the Right AND Left guide for Site 1 will be correctly orientated and will have replaced the right and left guide sites in the GGA destination plasmid. Now the user is ready to clone the entire cassette via HiFi cloning into their plasmid that also has Cas-CLOVER (Assembly techniques may vary depending on destination plasmids).

