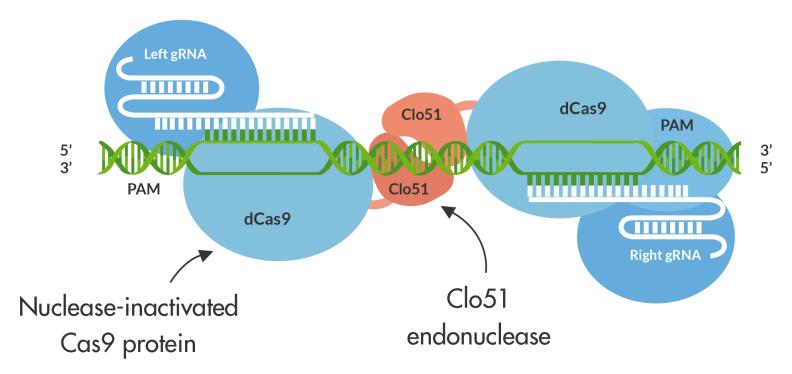


Plant Gene Editing with Cas-CLOVER™ "the clean alternative to CRISPR/Cas9"

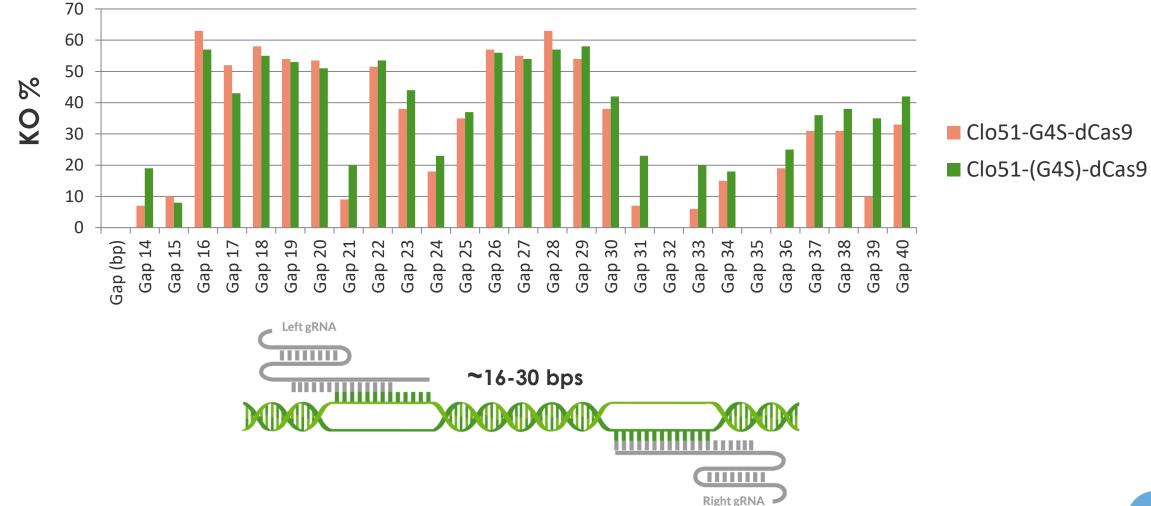


What is Cas-CLOVER?

Hybrid gene editing system using nuclease-inactivated Cas9 protein fused to Clo51 endonuclease.

dCas9 serves as a fusion protein only. It is mutated and unable to cut DNA.

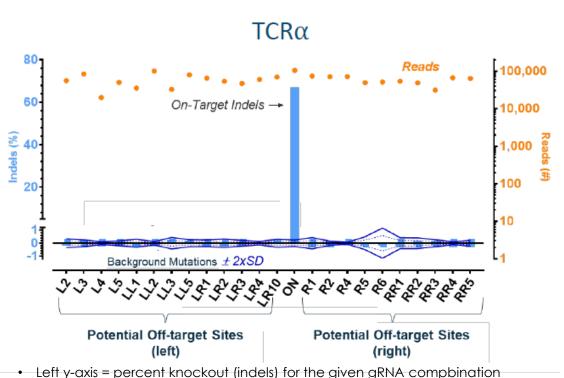
Cleavage activity depends on the dimerization of an "obligate dimer" of Clo51.

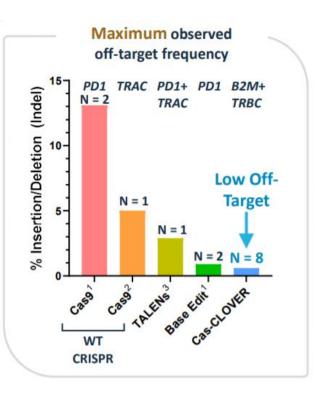

Benefits

Ease of use: double gRNA guided

High efficiency: dCas9-guided RNA recognition

High fidelity: cuts only when Clo51 nuclease dimerizes


Optimal Activity Reported in ~16-30 Base Pair Range


Designing multiple Cas-CLOVER sites within target genes is straightforward.

Li et al (2018) Cas-CLOVER™: A High-Fidelity Genome Editing System for Safe and Efficient Modification of Cells for Immunotherapy. Precision CRISPR Congress Poster.

Extensive studies reveal minimal off-target activity

- Right y-axis = number of next-generation sequencing (NGS) reads.
 Comprehensive coverage from around 100,000 reads
- X-axis bar graphs = percent knockout (indels) the different gRNA combinations for predicted off-target and on target "ON"
- X-axis lines = dotted blue line is 1 standard deviation (SD) from background mutation rate. Solid blue line is 2 SD from background mutation rate

- Other studies examine few (10 to 25) candidate offtarget sites¹⁻³.
- Our Cas-CLOVER off-target study is ~10x broader and includes 8 donor lots.

• "unbiased" off-target analysis iGuide-seq followed by Ampli-seq

Cas-CLOVER plant genome engineering

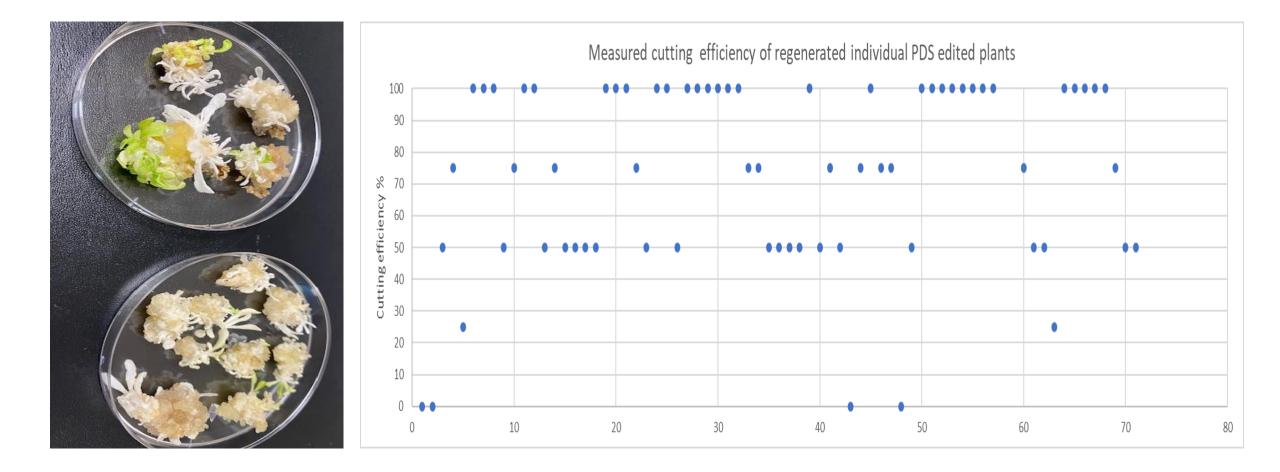
Robust genetic tools for trait development

Clean editing for possible non-GMO crop designation Optimization of the gene editing system: targeting the PDS gene in tobacco for visual phenotype read-out

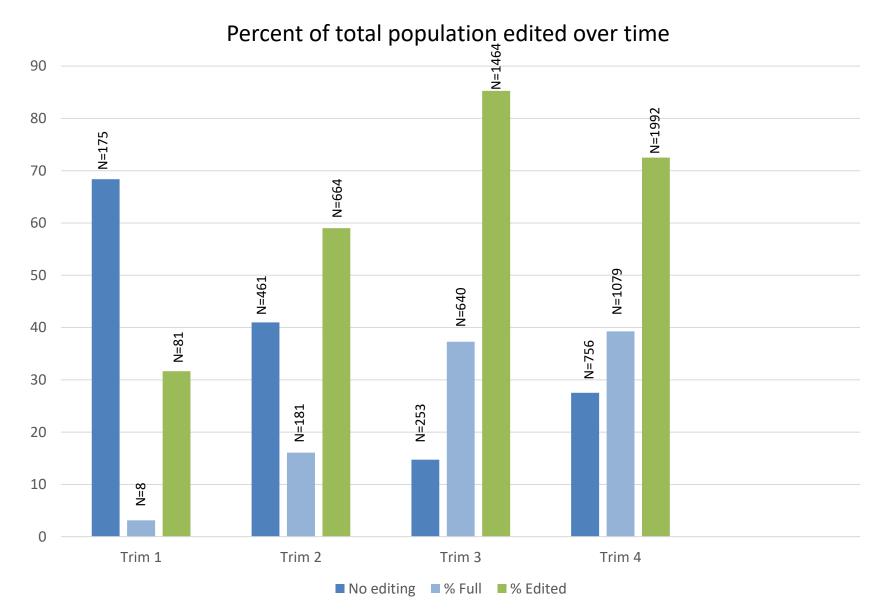
Utilized visual PDS read-out to optimize cutting efficiencies to 100%, demonstrating editing of all 4 alleles

T0 and T1 generations were screened for stable gene editing

First proof-of-concept: PDS Knockout


Knockout mutation of the phytoene desaturase (PDS) gene results in a visually pale and white phenotype

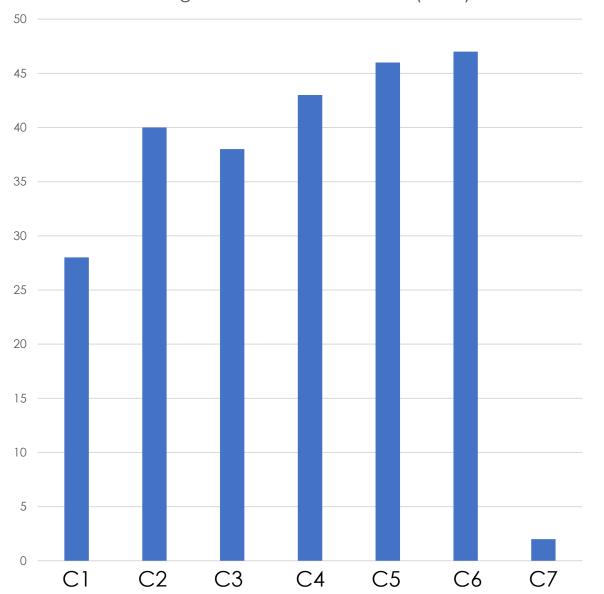
Green, pale mixed, and white shoots were all screened to determine cutting efficiencies. Afterwards, we verified that only white and pale material was edited at an overall average of around **50%+ editing efficiency (white shoots/total shoots from plates).**


Optimizing cutting efficiencies of Cas-CLOVER in plants

Demeetra developed an optimized protocol which is transferred to our licensees and partners

Improved system consistently yields 100% editing efficiency, modifying all four alleles in tobacco

Editing Over Time



- Correctly targeted plants can be identified in a relatively short period of time
- Editing efficiencies plateaued at the Trim 3 timepoint

Green = no editing Yellow = 1-2 alleles edited White = 3-4 alleles edited Note: Yellow plants can be crossed to produce fully edited plants. Therefore, the data represent white phenotype as "% fully edited" and white + yellow "% edited"

Whole callus editing identification

Editing % of PDS in whole callus (C1-7)

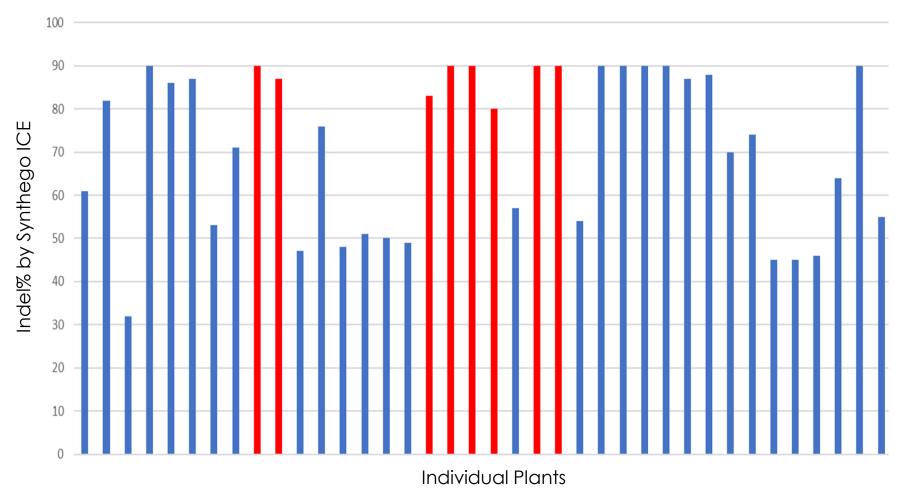
Next, to speed up and simplify our process, we aimed to test whole callus from plates for cutting efficiency with Cas-CLOVER

-Whole callus were homogenized, DNA was extracted, PCR amplified, sequenced, then analyzed by editing software

-These data are from a single promoter expressing Cas-CLOVER, Demeetra has tested multiple promoters with varying efficiencies.

Examples of edited sequences

POWERED BY SYNTHEGO ICE

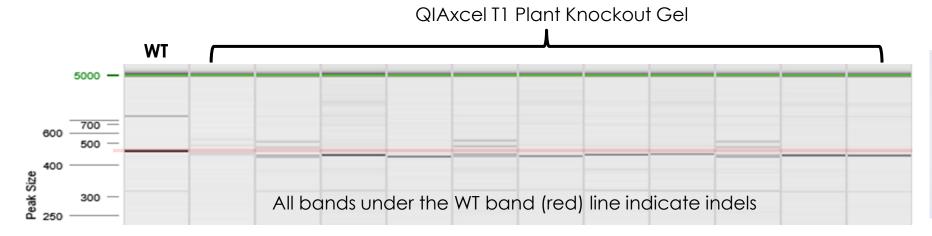

RELATIVE CONTRIBUTION OF EACH SEQUENCE (NORMALIZED)

	INDEL		CONTRIBUTION -	SEQUENCE					
	g2 -	27 -27	21%	AGCTCAAGAC					
	g1 =	8 -28	• 5%	ATTTGCTATTG					
	g2 -	27 -27	3%	AGCTCAAGACGGTCAAGTGCGTGATCGTTTTATCTTACTCTTTAAAGT					
	[g1] -	4 -14	• 3%	ATTTGCTATTGATGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTGTTAA					
	g2 -	0 -10	2%	AGCTCAAGACGGTTTAAGTGTTAAAGAAAGCAAGTGCGTGATCGTTTTATCTTACTCTTAAAGT					
	g1 -	2 -22	2%	ATTTGCTATTG					
	g1 +1 g2 +	2 +3	1%	TTTGCTATTGGACTCTTGCCAGCAN ATGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTGTTAAGNN GACTGGATGAGAAAGC					
g1 -1	g2 -3 fragment deletion -	51 -55	1%	ATTTGCTATTGGACTCTTGCCAGCTGGATGAGAAAGCAA(
	g1 -7 g2 -	2 -9	1%	ATTTGCTATTGGACTCTTGCCCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTGTTAAGCTGGATGAGAAAGCAA(
	g1 -5 g2 -	3 -8	1%	ATTTGCTATTGGACTCTTGCCTGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTGTT GACTGGATGAGAAAGCAA(
	g1 -5 g2 -	4 -9	1%	ATTTGCTATTGGACTCTTGCCTGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTGTTACTGGATGAGAAAGCAA(
	g1 -2 g2 -	3 -5	1%	ATTTGCTATTGGACTCTTGCCAGCTGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTGTTAACTGGATGAGAAAGCAA(
	g2 +	0 +10	1%	AGCTCAAGACGGTTTAAGTGTTAAG NNNNNNNNGACTGGATGAGAAAGCAAGTGCGTGATCGTTTTATCTTAC					
	g1 +	3 +8	1%	ATTTGCTATTGGACTCTTGCCAGCA NNNNNNATGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTA					
	g1 +	4 +4	1%	ATTTGCTATTGGACTCTTGCCAGCA NNNNATGCTTGGAGGGCAATCTTATGTTGAAGCTCAAGACGGTTTAAGTG					
	[g1] -	27 -27	1%	ATTTGCTATTG					
	[g1] -	3 -13	1%	ATTTGCTATTGGAC					

Relatively large deletions (in comparison, CRISPR/Cas9 generates 1-3 bp deletions) is consistently observed with Cas-CLOVER

This results in simpler, faster and more cost-effective screening of plants for editing, see <u>our post</u> on this.

Stability of plant edits over time


TO PDS Knockout Plants

- Red annotated plants were propagated to maturity
- Mature plants in soil demonstrated stable editing levels at flowering stage

T1 generation retain Cas-CLOVER edits

- Selected plants were self pollinated, and seed was harvested
- Unpurified PCR products screened on QIAxcel for rapid PCR detection

QIAxcel Mutagenesis Report

A DECEMBER OF A

	Deletion reads							WT reads			
oles	Pos	Sample Info	Found	Size [bp]	Conc. [ng/µl]	Rel. Abund. [%]	Found	Size [bp]	Conc. [ng/µl]	Rel. Abun [%]	
Plant Samp	E2	21B2.2	Yes	440	0.49	13.55	No	n/a	n/a	n/a	
	E4	21B2.5	Yes	438	0.97	26.83	Yes	468	0.37	7.46	
	A2	21B2.9	Yes	448	0.18	4.83	Yes	456	0.17	3.45	
	A3	21B2.10	Yes	437	0.46	12.73	No	n/a	n/a	n/a	
	A4	21B2.11	Yes	446	2.66	73.35	No	n/a	n/a	n/a	
	A5	21B2.12	Yes	439	1.65	45.53	No	n/a	n/a	n/a	
	A6	21B2.13	Yes	441	0.56	15.59	No	n/a	n/a	n/a	
	D11	21B2.14	Yes	443	0.18	4.89	Yes	463	0.39	7.80	
	A7	21B2.15	Yes	442	1.31	36.18	No	n/a	n/a	n/a	
	A8	21B2.16	Yes	448	1.51	41.64	No	n/a	n/a	n/a	
ndividual	B5	21B3.10	No	n/a	n/a	n/a	No	n/a	n/a	n/a	
	B9	21B4.1	Yes	438	0.54	14.83	No	n/a	n/a	n/a	
	D8	21B4.8	No	n/a	n/a	n/a	Yes	469	0.08	1.67	
	C10	21B8.10	Yes	445	2.11	58.27	No	n/a	n/a	n/a	
	C11	21B8.11	Yes	444	1.80	49.58	No	n/a	n/a	n/a	
č	D1	21B8.13	No	n/a	n/a	n/a	Yes	473	4.98	100.C	
=	D3	21B8.15	Yes	444	2.05	56.63	No	n/a	n/a	n/a	

- Cas-CLOVER produces larger indels than other technologies
 - The large indels are rapidly and easily detected by peak size & translated into a gel image

Deletions double checked by Synthego ICE

T1 generation screened by ICE

- 14 of 16 samples sequenced and analyzed demonstrated 100% indel percentage
- the two noted samples below also showed detection of WT remaining by QIAxcel
- two other samples with noted WT peaks by QIAxcel revealed only very small deletions by sequence

Licensing Options

Demeetra AgBio holds the exclusive license in Agriculture to an issued patent portfolio for Cas-CLOVER. We offer sublicenses and strategic development partnerships.

Evaluation

Technology transfer with reagents and protocols for a 6-month evaluation research license

Research

Economically attractive yearly fee. Freedom to switch technologies for commercialization to navigate gene editing regulatory landscape

Commercial

Flexibility of one-time fee-based license or more standard upfront/milestone/royalty structure

For More Information, Contact

Jack Crawford, M.S. CEO, Demeetra AgBio, Inc. Mobile: 315-351-9115 Email: jcrawford@demeetra.com

